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Abstract—Emergingmachine learning (ML) technologies, in combination with the increasing computational power of mobile devices,

lead to the extensive adoption of ML-based applications. Different from conventional model training that needs to collect all the user data

in centralized cloud servers, federated learning (FL) has recently drawn increasing research attention as it enables privacy-preserving

model training. With FL, decentralized edge devices in participation, train their model copies locally over their siloed datasets, and

periodically synchronize themodel parameters. However, model training is computationally extensive which easily drains the battery of

mobile devices. In addition, due to the uneven distribution of siloed datasets, the sharedmodel may become biased. To address the

efficiency and fairness concerns in a resource-constrained federated learning setting, in this paper, we propose Eiffel to judiciously select

mobile devices to participate in the global model aggregation, and adaptively adjust the frequency of local and global model updates.

Eiffel aims tomake scheduling and coordination for the federated learning towards both resource efficiency andmodel fairness. We have

conducted theoretical analysis ofEiffel from the perspectives of fairness and convergence. Extensive experimentswith a wide variety of

real-world datasets andmodels, both on a networked prototype system and in a larger-scale simulated environment, have demonstrated

that while maintaining similar accuracy performance,Eiffel outperforms existing baselineswith respect to reducing communication

overhead by up to 6� for higher efficiency and improving the fairnessmetric by up to 57% compared to the state-of-the-art algorithms.

Index Terms—Efficiency, fairness, federated learning, resource constraints, scheduling

Ç

1 INTRODUCTION

WITH the ever-growing computation capability and the
extensive adoption of mobile devices (e.g., smart-

phones, wearable medical devices, sensory equipment) in
today’s era of Internet-of-Things, an astronomical amount
of data are generated daily over the network. According to
a recent survey of Cisco, IoT devices will account for 50%
(14.7 billion) of all global networked devices by 2023 [1].
Each edge device is producing massive amount of data
every year, which can be naturally leveraged by user-inter-
active applications driven by machine learning techniques.
Typically, a machine learning model is trained in a central-
ized fashion where a datacenter gathers input data from all
the participating edge devices. As one might anticipate, this
is not a suitable method of model training for edge devices

due to privacy sensitivity of user data and communication
burden incurred by transferring massive raw data.

To overcome these limitations, federated learning [2]
has emerged as an attractive paradigm for decentralized
machine learning across edge devices. Instead of aggregating
raw data from user devices to a centralized server, federated
learning enables client devices to collaboratively participate
in the computation process on their local data towards learn-
ing a shared model. In particular, in a typical iterative train-
ing process, each device calculates on its local data, sends
local update of model parameters for global aggregation and
pulls the updated parameters for the next iteration. In this
way, user data will be kept at local device rather than being
sent to a remote server, thus preventing the privacy leakage.1

Despite the salient advantages from the privacy-preserv-
ing perspective, there are unique challenges and open prob-
lems that remain under-explored in federated learning. The
uppermost issue to tackle is the constrained resources on
edge devices, including the limited network bandwidth and
various network latency that render the communication
stage a bottleneck in the model training process. Moreover,
as input data are distributed across millions of devices in a
highly uneven fashion (not independent-and-identically-
distributed, i.e., non-i.i.d.) [3] and devices are not always
available to participate in the training due to dynamics on
power condition or network connection [4], the model train-
ing performance, with respect to accuracy and convergence,
is negatively impacted.
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1. Note that there may be some indirect privacy leakage from the
model updates when a potential adversary can infer some sensitive
attributes, which is out of the scope of our consideration.
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To enable efficient federated learning in such a resource-
constrained environment, existing works have investigated
a number of approaches ([3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], etc.) to reducing the communication
overhead, including gradient compression [8], sparsifica-
tion [15], less frequent synchronization [4], etc.

On the other hand, considering the uncertain availability
of mobile devices, the dynamic selection of participating
devices brings another degree of freedom towards training
efficiency [11], [12], [16]. Apart from the efficiency issue, an
equally important concern is fairness, which has not yet
been amply investigated in the context of resource-con-
strained federated learning.

In this paper, we aim to design an efficient federated learn-
ing scheme with the guaranteed degree of device-level fair-
ness, extending the state-of-the-art fairness proposal [17] to a
resource-constrained setting. In particular, our notion of fair-
ness is defined with respect to the model loss (or accuracy)
distribution among user devices, such that the enforcement
of fairness can attenuate the possibility of learning a biased
global model.

To achieve these objectives, we present our design of Eif-
fel, an EffIcient and Fair scheduling algorithm for FEderated
Learning, in a resource-constrained environment. Having
observed that involving the complete set of a large number
of devices for model update is impractical and suboptimal
in terms of prolonging communication time, Eiffel selects
participating edge devices and controls the frequency of
global model update aggregation in an adaptive manner.
Particularly, a variety of factors, including the local loss,
data size, computation power, resource demand and age of
update of each user device, are comprehensively consid-
ered. Participants are dynamically selected and coordinated
through the learning process, to achieve the best resource
efficiency given a fixed budget while ensuring fairness.

We have theoretically analyzed themodel fairness achieved
by our algorithmwith twometrics: the variance of performance
distribution and the cosine similarity between the performance
vector and all-ones vector. Both metrics are used to evaluate
the uniformity of loss (or accuracy) distribution among the
devices resulted from the proposed algorithm.

We have further conducted convergence analysis of our
algorithm for convex models and derived the upper bound
of the difference between the resulted loss function with the
optimal loss. Based on the convergence bound and under a
resource budget, the frequency of the global model update
is calculated following the adaptive framework [4] to mini-
mize the loss function.

Through extensive experiments using real-world datasets
on both a hardware setting and in a larger-scale simulated
environment for convex and non-convex models and for dif-
ferent data distributions, we demonstrate the fairness and
efficiency of our proposed approach. Eiffel performs fairer
than the state-of-the-art q-FFL [17] by resulting in at least 49%
less variance in terms of loss distribution. It also achieves at
least 60% smaller variance compared to RS (random selec-
tion) and 100% compared to LLS (a better performance-based
selection algorithm), under both i.i.d. and non-i.i.d. settings
for various models. With respect to model accuracy, the
results demonstrate that Eiffel’s performance remains similar
to the adaptive federated learning baseline [4] in both non-

i.i.d. and i.i.d. settings for the convex model. For computa-
tion-intensive model training, i.e., a complex model CNN
trained on CIFAR-10 dataset, Eiffel saves the communication
overhead by up to 6.45�, thanks to the efficient device selec-
tion algorithm and the strategically calculated global aggre-
gation frequency, while sacrificing the accuracy performance
by less than 5% compared to [4] for the non-i.i.d setting. To
summarize, our extensive experimental results confirm the
effectiveness of our proposed approach in achieving model
fairness for different machine learning models and data dis-
tribution settings. Compared to the state-of-the-art adaptive
federated learning baseline, Eiffel is able to achieve similar
model performance while significantly improving the com-
munication efficiency.

The remainder of this paper is organized as follows. We
discuss the state-of-the-arts and differentiate our work from
the existing literature in Section 2. The system model and
problem setting are presented in Section 3. We then present
our design of Eiffel in Section 4, and conduct theoretical
analysis of its fairness and convergence in Section 5. Our
evaluation setting and experimental results are presented in
Section 6 to demonstrate the advantages of our solution.
Finally, we discuss the practical aspects and future direc-
tions in Section 7, and conclude the paper in Section 8.

2 STATE-OF-THE-ART AND MOTIVATION

Due to the privacy concern of raw data generated and
stored at edge devices, federated learning [2], without
exposing raw data, has been increasingly employed by large
companies and organizations for machine learning tasks
across thousands to millions of user devices [18]. Unique
challenges and open problems come long with its promising
advantages to increasingly draw research attention, includ-
ing uneven data distribution (non-i.i.d.) across devices, con-
strained resources (power condition), network dynamics
(bandwidth, latency) which impact the communication
stage, etc.

Under the resource-constrained learning environment,
existing works have proposed a variety of approaches
towards efficiency improvement, such as reducing the commu-
nication traffic volume with gradient compression ([8], [19])
or sparsification [15], reducing the communication frequency
by adaptive model synchronization([4], [7]), reducing the
number of communicating entities through dynamic partici-
pant selection ([11], [12], [16], [20]), etc. In particular, partici-
pant selection has become a prevailing problem to be
addressed in federated learning, where edge devices are not
always available to participate. A selection algorithm was
proposed in [11] to randomly select user devices as many as
possible without violating resource constraints. Amiri et al.
[12] scheduled devices based on the channel condition and
the significance of local model updates. Yang et al. [21] pro-
posed an analytic model on the performance of federated
learning given a set of scheduling schemes and inter-cell inter-
ference. The factor related to the staleness of model updates
for user devices is introduced in [13] for the scheduling deci-
sion. Recently proposed participant selection algorithm,
Power-Of-Choice [22], establishes that biasing the devices
with higher local losses increases the rate of convergence
compared to unbiased participant selection. SCAFFOLD [23]
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states that FEDAVG [2] suffers from the “client-drift” issue
due to the non-i.i.d. data which results in slow convergence.
SCAFFOLD handles this issue bymodifying the local loss cal-
culation. Oort [20] schedules user devices for participation
based on their statistical utilities defined by the loss values of
local models and their global system utilities determined by
device speeds. Convergence analysis has also been conducted
by recent studies [4], [24], [25] for federated learning with
different client selection settings, i.e., all participation and
selective participation of client devices. Different from syn-
chronous federated learning as aforementioned, some recent
studies focus on addressing the challenges of asynchronous
federated learning. SAFA [26] enables a deadline for receiving
parameter update from the participating user devices. Thus it
can distinguish the straggler participants and also take neces-
sary steps to update the model with stale parameters.
FLEET [27] also enables stale updates but is adjoined with a
dumpening factor to give smaller weights as staleness
increases.

Apart from the efficiency goal, another important con-
cern is the fairness with respect to how the collaboratively
learned model performs (measured by loss value or accu-
racy level) across user devices.

A common definition of fairness in machine learning is
with respect to the accuracy parity across protected groups
[28]. Such a fairness cannot be trivially extended to feder-
ated learning, since it makes no sense to ensure identical
accuracy on each device given the significant variation
among the data. Good-intent fairness [16] was introduced to
address this issue to some extent, by maximizing the perfor-
mance of the worst performing device.

Li et al. [17] and Huang et al. [29] proposed algorithms
to achieve the fairness which is defined as the distribution
of model accuracy across devices. Collaborative Fair-
ness [30] regulates that the participants will get different
model parameter updates based on their contributions.
Such a fairness definition is important for business models
in biomedical or financial institutions to make predictions
in practice. A similar idea to incentivize contributors
owing high quality data is proposed by Yu et al. [31]. The
algorithm provides a dynamic payoff-sharing scheme that
distributes budgets among data owners to maximize the
utility and minimize the inequality. HFFFL [32] presents a
similar reward mechanism for data contribution among
the clients. It ensures proportional fairness by categorizing
clients into different levels for collaboration. FairFed [33]
presents a mechanism to detect adversarial devices and
reject their model updates. FLASH [34] is a heterogeneity-
aware fair algorithm which considers heterogeneity in
device type (in terms of hardware variety) and user behav-
ior (in terms of device status, such as idle, charging, con-
nected to a slow network).

In sharp contrast to these approaches, our proposed solu-
tion takes into account both the resource efficiency and the
model fairness. To the best of our knowledge, we are the
first to incorporate both the adaptive update frequency and
the selection of user devices per round in the synchronous
federated learning setting, achieving the best utilization of
limited resources while ensuring fairness of the learned
model. With respect to the fairness notion, Eiffel ensures fair
model distribution among heterogeneous devices in the

strategical selective setting, considering different data dis-
tribution and computation power across devices.

3 SYSTEM MODEL

In this section, we present our system model, with main
notations summarized in Table 1. The preliminaries and
basics of adaptive federated learning are presented in our
problem setting, followed by the elaboration on the effi-
ciency and fairness requirements.

3.1 Federated Learning

In federated learning, each participating device maintains a
model copy, trains the copy with its local data and commu-
nicates the model parameter update through an aggregator (
e.g., an edge server).

Consider a mobile edge computing system consisting of
N user equipment (or UEs, interchangeably used for user
devices) and an aggregator, as illustrated by Fig. 1. To col-
laboratively learn a shared model with federated learning,
all the UEs perform local update computing and their
parameter updates are averaged in the aggregator. In partic-
ular, for the nth UE, we denote its local dataset as Dn ¼
fxi 2 Rd; yi 2 RgjDnj

i¼1 with size jDnj, where j:j denotes the car-
dinality, xi is the input of the machine learning model with
cardinality d and yi is the desired output. For dataset Dn at
UE n, the loss function associated with this UE can be repre-
sented as

FnðuÞ , 1

jDnj
X
i2Dn

fiðuÞ;

where fiðuÞ is the loss function defined on its parameter vec-
tor u for each data point i. Let us denote the entire set of data
by D ,

PN
n¼1 Dn. Then the global loss function on all the

distributed datasets can be expressed as

TABLE 1
Main Notations in System Model

Notation Meaning

FiðuÞ Local loss function at node i
F ðuÞ Global loss function
Di Dataset at node i
uiðtÞ Local model parameter at node i in iteration t
uðtÞ Global model parameter in iteration t
h Gradient descent step size
t Number of local update steps between

two global aggregations
T Total number of local update steps at each node
K Total number of global aggregation steps,

equal to T=t
d Gradient divergence defined in Definition 1
hðtÞ Defined in Eq. (11),

gap between the model parameters obtained from
distributed and centralized gradient descents

r Lipschitz parameter of FiðuÞ for all i and F ðuÞ
b Smoothness parameter of FiðuÞ for all i and F ðuÞ
cm Resource (typem) consumption

in one local update step
bm Resource (typem) consumption in one global

aggregation step
Rm Resource (typem) budget
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F ðuÞ ,
PN

n¼1 DnFnðuÞ
D

:

The objective of federated learning is to learn the model
with the non-i.i.d. data residing in the UEs, by minimizing a
particular loss function F ðuÞ to find u� ¼ arg minF ðuÞ.

3.2 Resource Efficiency

The resource efficiency in federated learning can be intui-
tively interpreted as how fast a model can be learned by
coordinating the resources on multiple user equipments
across time. The resources are generally related to computa-
tion and communication, which are constrained in the fed-
erated learning setting with low-end mobile devices, as
opposed to the conventional machine learning training in
centralized datacenters. More formally, resource efficiency
is evaluated by the performance of the global model, after a
given number of iterations for learning. For the purpose of
maximizing resource efficiency in a resource-constrained
environment, an optimally designed adapter is desired to
determine the frequency of local updates and global aggre-
gations [4]. Let t denotes the number of local model itera-
tion between each consecutive global aggregation, and T is
the total number of local iterations required to complete the
learning at each node. We further use K to represent the
total number of global aggregations through the learning
process. Assuming that T is an integer multiple of t, we
have K ¼ T

t
. Upon the completion of training, the learned

model parameters, denoted as uf , is defined as

uf , argmin F ðuÞ;
u 2 fuðktÞ : k ¼ 0; 1; 2. . .Kg: (1)

For each user device, different types of resources are required
to participate in federated learning. Given a total of M types
of resources, each participating UE consumes cm units of
resource with type m 2 f1; 2; . . .;Mg in every local update
step, and consumes bm units at each global aggregation step,
where cm � 0, bm � 0 and both are finite real values.

Throughout the training process with T iterations, the total
amount of type-m resource to be consumed is ðT þ 1Þcm þ
ðK þ 1Þbm, where the additional “+1” is for computing

F ðuðKtÞÞ. This amount should not exceed a given budgetRm.
Essentially, the adaptive federated learning needs to deter-
mine the optimal t and K (and thus T ), to achieve the best
possible training performance at the end of training, i.e., the
minimum loss function F ðufÞ computed with the final model
parameter uf , given resource constraints. This optimization
problem is formally presented as follows:

min
8t;K2f1;2;3...:g

F ðufÞ

s.t. ðT þ 1Þcm þ ðK þ 1Þbm � Rm; 8m
T ¼ Kt: (2)

3.3 Model Fairness

Apart from adaptively determining the frequency of local
updates and global aggregations, we further consider the flex-
ibility of device participation for global aggregation (deter-
mined by a selector), based on the following observations.

First, due to limited network resource and unstable con-
nection, not all UEs can always participate in the global
aggregation step. Second, as data are non-i.i.d. across UEs,
aggregating updates from all the UEs is not the best option
for model convergence. Therefore, instead of blindly involv-
ing all the UEs, we hope to judiciously coordinate the UEs
for their participation.

Intelligent selection of UEs can save essential resource
such as bandwidth compared to the default setting of all
participation. Moreover, since different UEs contribute dif-
ferently towards training performance, based on their data-
sets, energy consumption, etc., appropriate selection of UEs,
with the intuitive idea of involving important UEs more fre-
quently, has strong promise to achieve better training per-
formance. On the other hand, with flexible participation
introduced, there exists risk that a device may never be
selected and the learned model is severely biased.

To avoid such situations, we consider the fairness of the
learned model, which is defined uniquely for the federated
learning setting: given trained models u and u0, we can say that u
is more fair than u0, if the loss or accuracy of u on the N devices
ff1; f2; . . .; fNg, is more uniform than that of u0 [17]. With the
consideration of both resource efficiency and model fair-
ness, we will present our solution of dynamic UE selection
in the next section.

4 DESIGN OF EIFFEL FOR EFFICIENT AND FAIR
SCHEDULING

Now we present our design of Eiffel to efficiently and fairly
coordinate mobile devices for their participation in the com-
plete training process of federated learning.

The main idea of Eiffel is to select a set of mobile devices,
i.e., UEs, in each round, to participate in federated learning.
To make judicious decisions on the selection of UEs, we con-
sider the comprehensive factors of the local loss, the data
size, the computation power, resource demand and last
update time associated with each UE. Accounting for these
factors, an overall index will be calculated by Eiffel, to indi-
cate the priority of each UE to be selected for participation
by the scheduling algorithm.

Particularly, before each global aggregation, the follow-
ing factors will be considered for the ith UE: the loss value

Fig. 1. The federated learning setup for our proposed approach. Each
User Equipment (UE) or device is preloaded with the model. An Aggre-
gator selects (using Selector) a subset of UEs to receive model parame-
ters (2-way darker arrows are used to denote those selected UEs) after
each adaptive number of local iterations.
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fiðuÞ achieved with local model, the size of local data di, the
computation power ci, the resource demand ri and the age
of update (AoU) ti which refers to the last communication
round when the UE participated in global aggregation.
With the these metrics captured before the global update,
the priority index of the ith UE will be calculated as

v=fiðuÞ þ %di þ g
ci
ri
þ cti: (3)

Here, v; %; g;c are used to set weight for each of the factors
aforementioned to be considered in priority. A higher value
of this index indicates a higher priority. Intuitively, a UE
with a lower loss fiðuÞ indicates a more accurate copy of
model, and thus should have higher priority to participate
in and contribute to the global model aggregation. Similarly,
if a UE has more local data (a larger di), it should be pre-
ferred in our selection to make contribution. The third term,
ci
ri
, represents the resource efficiency of the UE, and a higher

value makes the UE more competitive to be selected.
Finally, the AoU metric ti helps to prevent a UE from being
left isolated for a long time. The four weight parameters
will remain constant for all the UEs within one global
update but can be flexibly tuned based on the performance
of the global model.

The procedures at the aggregator and each UE are pre-
sented in Algorithm 1, which is coordinated by Eiffel with
an essential design of a dynamic selection of UEs for the
participation in global updates. The aggregator initiates the
learning process by sending the model u, initialized as a
constant or random vector, and the local training step t, ini-
tialized as 1, to all the UEs (line 6-7). Accordingly, each
UE, upon receiving data from the aggregator, will perform
local training iterations for t steps. Then it reports the local
updates and per-step resource usage to the aggregator
(line 30-34), to be globally aggregated as elaborated
next., When the aggregator receives weights and other
parameters from the selected UEs, it will update the global
model using weighted average (line 10-16, specifically
line 13). The relative weight, associated with each UE, is
proportional to the amount of its local data di, the ratio of its
computation power to resource demand ci

ri
, and its AoU

metric maintained using LtðiÞ in the algorithm (with more
elaboration to come in the next section). Meanwhile, the
local loss at each selected UE will be recorded in LlðiÞ, the
accumulated resource consumption for each type will be
updated (line 15), and the AoUs of all the UEs will be
updated (line 14,18).

With all the metrics readily available, the adaptive value
of t for the next round of local updates is calculated follow-
ing [4]. In addition, a dynamic participant selection comes
into action to decide the next set of UEs for reporting their
model updates in the next round (line 21-22).

Given the per-round resource budget R, a subset of UEs
will be selected based on their priority index values in Eq. (3).
More specifically, a number of UEs are chosen from select,
which is the list of UEs selected in the last round, to exhaust a
portion (k percent) of the budget, while the rest of the budget
is used to involve UEs from L� select, which did not partici-
pate in the previous round. The rationale for introducing the
proportion parameter k is to promote contribution frommore

participants: for example, if the priority ranking of each UE
remains the same across two consecutive rounds, this propor-
tional selection gives opportunities to a few promising UEs
that were just below the threshold to be selected in the previ-
ous round.

Algorithm 1. Procedures at the Aggregator and Each
User Equipment (UE) Coordinated With Eiffel

Input:
List of all UEs L,
List of computation power of UEs Lc < c1; . . .; cN >,
List of resource demand of UEs Lr < r1; . . .; rN >,
List of data size of UEs Ld < d1; . . .; dN >,
Resource budget Rm; 8m,
Per-round resource budget R.

Initialize:
1: Initialize u as a constant or random vector
2: List of local loss of UEs Ll  < 0; . . .; 0 >
3: List of AoU of UEs Lt  < 1; . . .; 1 >
4: select L, t  1, sm  0; 8m

At the Aggregator:
5: while True do
6: if 1st round then
7: Send u and t to each UE in L
8: else
9: u 0; rF ðuÞ  0
10: for UE i in select do
11: Receive ui, FiðuÞ;rFiðuÞ and cm;i; 8m
12: rF ðuÞ þ¼ diairFiðuÞ=D
13: u þ¼ diaiui=D // where ai ¼ ciLtðiÞ

ri
14: LtðiÞ  1, LlðiÞ  rFiðuÞ
15: sm þ¼ cm;it þ 2bm; 8m
16: end for
17: for UE i in L� select do
18: LtðiÞ  LtðiÞ þ 1
19: end for
20: Calculate t based on [4]
21: select UEs from sorted select to consume kR
22: select UEs from sorted L� select to consume

ð1� kÞR // sorting based on Eq. (3)

23: if 9 m j sm þ
P

i2selectðcm;it þ 2bmÞ > Rm then

24: Send STOP flag to each UE in L
25: Return u

26: end if
27: Send u and t to each UE in select
28: end if
29: end while

At each UE:
30: while STOP flag not received do
31: Receive u and t from the Aggregator
32: Perform local iterations for t steps to update ui
33: Send ui; FiðuÞ;rFiðuÞ; cm;i; 8m to the Aggregator
34: end while

After participant selection, the aggregator checks the
availability of each type of resource for the next round,
based on an estimation. Given the selected UEs in select, the
updated t, and the current total accumulated type-m
resource usage sm, it calculates the expected total usage
after the next round, based on the historical cm;i and avail-
able bm (line 23). If the resource budget Rm is violated for
any type m, the aggregator will stop training at each UE
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and return the final model parameters (line 23-26). Oth-
erwise, it sends model and step updates to each selected
participant to start the next round of training.

In summary, the dynamic selection of UEs, in combina-
tion with the adjustment of local computation steps, man-
ages to improve the resource efficiency and benefit the
model convergence. Moreover, the criteria for selecting UEs
accounts for a comprehensive set of factors, contributing to
the guarantee of fairness. These features will be formally
analyzed in our next section.

5 ANALYSIS OF FAIRNESS AND CONVERGENCE

In this section, we will analyze the behavior of Eiffel from
both of the convergence and fairness perspectives.

5.1 Convergence Analysis

Our convergence analysis is based on the adaptive federated
learning setting which incorporates our scheduling algo-
rithm.2 The goal is to find the upper bound of

F ðufÞ � F ðu�Þ; (4)

where u� is the optimal model parameter. As aforemen-
tioned, T iterations throughout the training can be divided
into K different intervals, with only the first and last itera-
tions in each interval involving global aggregation. We use
the shorthand notation ½k� to denote the iteration interval
½ðk� 1Þt; kt�, for k ¼ 1; 2; . . .; K. The global loss function on
all distributed datasets can be expressed as

F ðuÞ ,
PP

i¼1 DiaiFiðuÞ
D

; (5)

where ai ¼ citi
ri
, impacting how likely the local model of the

ith UE will be selected for the contribution to the global

model update, and P is the number of devices selected from
a total of N devices on each global iteration. The device

selection probability is proportional to Diciti
ri

, thus a local

device which possesses more training data, higher compu-

tational power, has longer waiting time to send parameters

and has less resource demand will get a higher probability

of selection.
In contrast, prior works define F ðuÞ =

PP

i¼1 DiFiðuÞ
D to select

a subset of UEs with probabilities Di
D at each round. Consid-

ering only data size leads to unfairness among the partici-
pating devices. Eiffel’s selection algorithm provides a good
balance of efficiency and fairness.

Our analysis is conducted based on the assumptions that
for all i, 1) FiðuÞ is convex, 2) FiðuÞ is r� Lipschitz, that is
for any u and u0, kFiðuÞ � Fiðu0Þk � rku � u0k, and 3) FiðuÞ is
b� smooth, i.e., for any u and u0, krFiðuÞ � rFiðu0Þk � bku �
u0k. The learning problem here is to minimize F ðuÞ, i.e., to
find the optimal model parameter u� such that

u� , arg min F ðuÞ: (6)

After the global iteration, for node i, the update is

uiðtÞ ¼ ~uiðt� 1Þ � hrFiaið~uiðt� 1ÞÞ; (7)

where ~uiðtÞ denotes the parameter after previous global
aggregation. h is the step size. For any iteration twhich may
or may not be a global aggregation step, we have

uðtÞ ¼
PP

i¼1 DiaiuiðtÞ
D

: (8)

For each local iteration interval ½k�, we use v½k�ðtÞ to denote
an auxiliary parameter vector that follows a centralized gra-
dient descent according to

v½k�ðtÞ ¼ v½k�ðt� 1Þ � harF ðv½k�ðt� 1ÞÞ; (9)

where v½k�ðtÞ is defined for interval t 2 ½ðk� 1Þt; kt] for a
given k. At the beginning of each interval ½k�, v½k�ððk�
1ÞtÞ , uððk� 1ÞtÞ, where uðtÞ is the average of local parame-
ters defined in Eq.(8). For the analysis, gradient divergence
is further defined below which is the difference between the
gradient of local loss function and the gradient of global
loss function.

Definition 1 (Gradient Divergence). For any i and u, we
define di as an upper bound of krFiðuÞ � rF ðuÞk, i.e.,

krFiðuÞ � rF ðuÞk < aidi

also d ,
P

i¼1 Diaidi

D
(10)

This definition is related to the data distribution and
accounts for the metrics we use for scheduling defined in
the previous section. Upper bound of Eq. (4) can be derived
by adopting the adaptive setting of [4] in two steps:

� The first step is to find the difference between the
distributed (uðtÞ) and centralized gradient descents
(vðtÞ) after each t steps of local update without global
aggregation.

For any interval ½k� and t 2 ½k�, the upper bound of
difference between uðtÞ and v½k�ðtÞ is derived as

kuðtÞ � v½k�ðtÞk � hðt� ðk� 1ÞtÞ; (11)

where hðxÞ , da
b
ððhbþ 1Þx � 1Þ � hdx; 8x 2 f0; 1; 2; . . .g.

� The second step is to combine the aforementioned
gap with the convergence bound of vðtÞ within each
interval ½k� to obtain the convergence bound of uðtÞ
which is essentially deriving the upper bound of
F ðuðT ÞÞ � F ðu�Þ

ðuðT ÞÞ � F ðu�Þ � 1

T ðfahð1� hba
2 Þ � rhðtÞ

t�2
Þ
; (12)

where f ¼ 1
kv½k�ðtÞ�u�k2

and � represents the lower

bound of F ðuðT ÞÞ � F ðu�Þ, b, r are Smoothness and

Lipschitz parameters. From Eq. (12) we can say that

the impact of a is that the increment of computation
power and age of update and decrement of resource

demand will lead to a faster convergence as the right

hand side of Eq. (12) will be smaller.

2. The convergence analysis is only for convex models, similar to the
literature. Non-convex models are considered in our experimental
evaluation.
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5.2 Quantification of Fairness

Our analysis of fairness is based on two metrics: the vari-
ance of performance across devices and the Cosine similar-
ity between the performance distribution and 1 [17]. For the
ease of mathematical exposition, we restate the objective
function of federated learning as follows:

min
u

FqðuÞ ¼
PN

i¼1 Dia
q
i fi;qðuÞ

D
; q ¼ 0 or 1

Here a denotes the contribution of each selected device
on the global model update according to our selection algo-
rithm. q ¼ 0 corresponds to the general objective function
for federated learning without the selection algorithm.

The Variance of Performance Distribution. The performance
distribution onm devicesX ¼ ff1;qðuÞ; . . .; fm;qðuÞg is defined
to be more uniform under solution u than u0, if the variance of
X under solution u is less than that under u0, that is

Varðf1;qðuÞ; . . .; fm;qðuÞÞ < Varðf1;qðu0Þ; . . .; fm;qðu0ÞÞ:

Our proposed algorithm selects a set of devices in each
round for global aggregation. Since the selected devices
include k percent of the previously unselected devices, as in
Algorithm 1, it ensures that the variance among perfor-
mance of all the N devices will be smaller. In a more formal
manner, suppose u is the optimal solution of our problem
minu F1ðuÞ, and u0 is the solution to the conventional prob-
lem minu F0ðuÞ which does not enable selection, we can eas-
ily verify that our solution u leads to a more uniform
performance distribution than u0

PN
i¼1 f

2
i;1ðuÞ

N
� 1

N

XN
i¼1

fi;1ðuÞ
 !2

�
PN

i¼1 f
2
i;1ðu0Þ

N
� 1

N

XN
i¼1

fi;1ðuÞ
 !2

�
PN

i¼1 f
2
i;1ðu0Þ

N
� 1

N

XN
i¼1

fi;0ðu0Þ
 !2

Cosine Similarity Between the Performance Distribution and 1.
The performance distribution on m devices X ¼ ff1;qðuÞ;

. . .; fm;qðuÞg is defined to be more uniform under solution u

than u0, when the cosine similarity ofX and 1 under solution
u is greater than that under u0, which is

1
N

PN
i¼1 fi;qðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 f

2
i;qðuÞ

q �
1
N

PN
i¼1 fi;qðu0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 f

2
i;qðu0Þ

q :

Following a similar setting and analysis as the previous
metric, we have the following inequalities for our solution
u and other u0: 1

N

PN
i¼1 fi;0ðuÞ � 1

N

PN
i¼1 fi;0ðu0Þ and 1

N

PN
i¼1

f2
i;0ðuÞ � 1

N

PN
i¼1 f

2
i;0ðu0Þ. Therefore, we can derive the follow-

ing expression, omitting the steps similar as in [17] due to

space limit

1
N

PN
i¼1 fi;0ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 f

2
i;0ðuÞ

q �
1
N

PN
i¼1 fi;0ðu0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 f

2
i;0ðu0Þ

q :

Again, we have demonstrated that our solution leads to a
more uniform performance distribution, when measured

using the cosine similarity metric.

6 EXPERIMENTAL ANALYSIS

In this section, we evaluate Eiffel with extensive experiments,
from the perspectives of machine learning models’ perfor-
mance (accuracy and loss), efficiency (communication
improvement) and fairness (variance of loss distribution across
devices). All these metrics collectively demonstrate the superi-
ority of Eiffel in achieving fairness as well as efficiency. We
show that Eiffel’s device selection barely hampers the model
performancewhile reducing communication overhead.

6.1 Experimental Setup

Our experiments were conducted in both a prototype system
and an emulated large-scale environment. To conduct the
experiments in a resource-constrained heterogeneous envi-
ronment, we use devices of different memory and computa-
tion power, as shown in Table 2. Two different laptops and a
mobile phone were employed as the user devices (UEs), and
a cloud server, i.e., a small AWS instance, was used as the
aggregator in the prototype federated learning system. All
the UEs have local datasets on which model training was
conducted. We also conducted larger-scale simulation
experiments on an AWS c5a.4xlarge instance with 16
vCPUs, where we emulated a federated learning environ-
ment with hundreds of UEs participating. We took careful
measures when instantiating each of the participating UE
processes to mitigate the gap between our emulation and
reality. Models were trained with emulated UEs where the
resource budget (in terms of computation time) was gener-
ated according to a Gaussian distribution with mean and
standard deviation values derived from our prototypemeas-
urements. The computational power of each UE follows
commonly used devices such as laptops, mobile phones,
Raspberry Pi, and etc., consistent with the real-world hetero-
geneous environment. Each UE and the aggregator commu-
nicates with each other using Socket.

TABLE 2
Experimental Setup: Prototype Setting and

Emulation Environment
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Models and Datasets. We use both convex and non-convex
models to evaluate our proposed algorithm. One of them is the
popular binary classifier, squared-SVM (to be mentioned as
SVM for simplicity), and the other one is a convolutional neural
network (CNN). For the SVM model, we feed the publicly
available large-scale MNIST [35] handwritten digit dataset for
model training. It contains gray-scale images of 70,000 hand-
written digits (60,000 for training and 10,000 for testing). As a
binary classifier, the SVM model will classify a digit as either
odd or even for theMNIST dataset. The CNNmodel used in our
experiments follows a standard structure with 9 layers in total,
including two 5 x 5 x 32 convolutional layers, two 2 x 2 max-
pool layers, two local response normalization layers, two fully-
connected layers and one softmax classification layer. In addi-
tion to the MNIST dataset aforementioned, two large-scale
image datasets, Fashion-MNIST and CIFAR-10 [36], are also
used for CNN model training. More specifically, Fashion-
MNIST has the same format as MNIST but includes 28 x 28
grayscale images of fashion items instead of digits. It consists
of 70000 images, categorized into 10 classes, with 60,000 used
as a training set and the rest for a test set. CIFAR-10 [36] consists
of 60,000 32 x 32 color images. We have also conducted our
experiments with two types of data distribution (i.e., i.i.d. and
non-i.i.d.) among the UEs. More specifically, for the i.i.d.
setting, each data sample is assigned randomly to a UE.
For the non-i.i.d. setting, each UE consists of data with the
same label. If there are more labels than UEs, each UE will
have data with more than one label, but the number of
labels at each UE is no more than the total number of
labels divided by the total number of UEs rounded to the
next integer. In the training phase, the learning step hyper-
parameter is set to 0.01 and the batch size is 100. We
launch our model training in the popular machine learning
framework, Tensorflow [37], with stochastic gradient
descent as the optimizer. Other hyperparameters such as
control parameters for different models and the maximum
value of t are kept the same with [4] for the adopted con-
trol algorithm to select the optimal value of t accordingly.

Evaluation Metrics. Under both i.i.d. and non-i.i.d data
distribution settings, we evaluate our solution with respect
to the accuracy, efficiency and fairness. The accuracy met-
rics include the loss value and accuracy level of the trained
model with respect to different t values (i.e., the local itera-
tion number). The efficiency is measured by the communi-
cation frequency for global aggregation multiplied by the
number of UEs selected and the time for exchanging param-
eters between the aggregator and UEs. Our fairness evalua-
tion is based on two commonly used metrics in the
federated learning setting: variance and skewness [16], [17].
The variance of loss distribution among the UEs indicates
how the final global model is biased among a group of UEs,
while the skewness metric implies how much the loss distri-
bution is deviated from the normal distribution and how
symmetric it is across the UEs.

Baselines. We compare Eiffel with the following baselines
to evaluate their model accuracy performance and commu-
nication efficiency:

� Canonical federated learning, where every participat-
ing UE contributes to the model training using a fixed
(non-adaptive) t value.

� Adaptive federated learning strategy in [4] which
adopts the optimal t value given the resource
constraints.

� Centralized gradient descent version of model train-
ing where the whole training is carried out on a sin-
gle UE.

With respect to fairness, we choose three additional
baselines:

� q-FFL [17], the state-of-the-art fairness-oriented fed-
erated learning, with the q value set as 1.5.

� Random selection (RS), which selects UEs to contrib-
ute to global model aggregation in a randommanner.

� Least training loss based selection (LLS), which
selects the devices that generate the smallest local
training loss in each round.

All the baselines select the same number of UEs as Eiffel
in each experiment.

6.2 Results and Analysis

6.2.1 Fairness

We have conducted two sets of experiments to evaluate the
fairness achieved by Eiffel, in comparison with the three
baselines aforementioned: LLS (Least training loss based
selection), RS (Random Selection), and q-FFL [17]. Table 3
presents the results for SVM and CNN models, trained on
MNIST and CIFAR-10 datasets, respectively, involving 100
emulated UEs with different computation power, time bud-
get and non-i.i.d data distribution. In particular, we show
the average loss of all the UEs (column 3), the average loss
of the worst 10% UEs (column 4), the average loss of the
best 10% UEs (column 5), the variance of the loss across all
the UEs (column 6), and the skewness (column 7).

As observed in Table 3, Eiffel achieves the minimum vari-
ance among all the comparing baselines, for both SVM and
CNNmodels. Comparedwith q-FFL, the state-of-the-art fair-
ness baseline, Eiffel reduces the variance by 57.8% and 59%
for the two models, respectively. Moreover, with respect to
the skewness metric, the advantages of Eiffel over q-FFL and
the other two baselines are more obvious. For CNN model,
Eiffel achieves a 86.94% smaller skewness of loss distribution
than q-FFL, and for SVM the skewness is reduced by more
than 100%. Both of the variance and skewness metrics dem-
onstrate the advantages of Eiffel over all the baselines in
achieving fairness of model loss distribution across UEs.

In a more intuitive manner, Fig. 2 illustrates the distribu-
tion of loss values across 20 user devices in our prototype

TABLE 3
Statistics of Model Loss Distribution for SVM Trained onMNIST

and CNN on CIFAR-10, Achieved by Eiffel, LLS, RS,
and q-FFL, Respectively
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experiment for the two models and four algorithms. More
specifically, the x-axis represents the loss values of a learned
global model at local devices, and the y-axis implies how
many devices have the similar loss values, falling to the
same loss range. For example, for SVM, considering the
range of 0.3 to 0.4, there are two devices in the Random
baseline whose loss values fall into this range, and one
device in the LLS setting in this range. As observed, with
Eiffel, 60% of the UEs have their loss values of the SVM
model in the range of 0.17 to 0.085, while for the CNN
model, 65% UEs have loss values centered around the range
of 0.08 to 0.1. In comparison, with the other three algo-
rithms, we hardly identify the similar range of loss value
where there are more than 40% devices, except for LLS on
SVM model. Although 50% UEs’ losses for SVM with LLS
are centered around 0.01 to 0.1, the variance of the overall
loss distribution is higher than all the other algorithms.

6.2.2 Efficiency

Next we show the communication efficiency of Eiffel com-
pared to the adaptive federated learning baseline [4]. Table 4
presents the average number (t) of local iterations across
rounds achieved by the baseline (Column 3) and Eiffel (Col-
umn 4), under two settings of UEs (corresponding to two
values in each cell of the table), for SVM and CNN models
with i.i.d and non-i.i.d data distributions, respectively.

As observed, the average t value with Eiffel is consis-
tently larger than the baseline across different settings. A

larger t indicates more local iterations on each UE between
two consecutive global aggregations, which leads to a
smaller communication frequency. This brings significant
advantages in the resource-constrained environment where
the overall communication network bandwidth is limited.
In order to quantify the communication overhead, we use
an intuitive measure: the multiplication of the total number
of participating UEs, the total number of global aggrega-
tions, and the communication time for parameter exchange
between the aggregator and participating UEs. We calculate
the ratio of the baseline’s communication overhead to Eiffel,
shown as the communication improvement of Eiffel over [4]
in Table 4 (Column 5). Results have demonstrated the com-
munication efficiency improvement of Eiffel in comparison
with the baseline. In addition to a relatively small increase
of the t value, the smaller number of participating UEs and
the reduced communication time lead to the large improve-
ment of communication efficiency.

6.2.3 Accuracy

As mentioned, we have also compared our strategy with the
baselines in terms of the model loss and accuracy. Fig. 3
presents the loss and accuracy values of the SVM model,
learned by 60 UEs in our prototype, with different strate-
gies, i.e., Eiffel (represented by the single blue dot), the adap-
tive federated learning baseline [4] (represented by the
single red dot) and the centralized learning baseline (repre-
sented by the green line), respectively. In particular, Eiffel
and [4] have adaptive t values across rounds. Their average
t values and their model loss or accuracy values are used to
position their corresponding dots in Fig. 3. We also investi-
gate the variants of Eiffel and [4] with fixed global update
frequency (fixed t) across rounds, and illustrate how they
perform given different values of t (11 values ranging from
1 to 100), as represented by the blue dotted line and the red
dotted line. The centralized approach does not depend on t

and thus be represented as a flat line. In a similar vein,
Figs. 4 and 5 present the performance of the CNN model
learned with 20 UEs on CIFAR-10 and Fashion-MNIST,
respectively. The experiments are conducted with the iden-
tical resource budget setting for all the baselines.

The experimental results shown in Figs. 3, 4, and 5 con-
sist of both settings of i.i.d. and non-i.i.d. data distribution
across the UEs. For the i.i.d. distribution, the performance
of the variants of Eiffel and the baseline [4] (i.e., the fixed-t

Fig. 2. Distribution of loss values across user devices for CNN and SVM
models, respectively, achieved by Eiffel and the three comparing
baselines.

TABLE 4
The Frequency of Global Aggregation, Indicated by the Average
Number (t) of Local Iterations Across Rounds, Achieved by
Eiffel and the Adaptive Federated Learning Baseline [4],
and the Communication Improvement of Eiffel Over [4],

Under Different Settings
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setting), represented by the blue dotted lines and red dotted
lines in Figs. 3a, 3c, 4a, 4c, and 5a, 5c, exhibits much similar-
ity with the increasing t value. With the adaptive setting,
the average t values of Eiffel for these cases are also aligned
with or larger than the average t of the adaptive federated
learning baseline [4], as illustrated by the x-coordinates of
the singe blue and red dots in the corresponding figures. A
larger t value resulted by Eiffel (Figs. 4a, 4c) indicates a
lower global aggregation frequency which leads to the
reduction of the communication overhead. With the non-
i.i.d. distribution setting, the performance results exhibit a
bit more diversity for Eiffel and the baseline [4]. For CNN on
CIFAR-10, a more complex model on a larger dataset com-
pared to SVM on MNIST and CNN on Fashion-MNIST, Eif-
fel sacrifices the model performance by less than 5% when

compared to the baseline [4], as illustrated in Fig. 4b,d. Such
a performance tradeoff is anticipated, since Eiffel has a
smaller number of UEs selected in participation and ensures
fairness among all the participants as aforementioned. In
general, even though with fewer participating UEs, Eiffel
manages to achieve comparable model performance with
the adaptive federated learning baseline [4], as demon-
strated by the y-coordinates of blue and red single dots in
Figs. 3, 4, and 5.

For the Centralized baseline, represented by the green
line, the training datasets associated with each UE are resid-
ing in the centralized server, where the model is trained on
the complete set of training data using centralized gradient
descent. Intuitively, if given a fixed number of iterations or
rounds, the Centralized baseline will result in better model

Fig. 3. Loss function values and classification accuracy with different t achieved by Eiffel, adaptive federated learning baseline [4] and centralized
baseline for SVM model trained onMNIST under different settings. The average t value of Eiffel, baseline [4] and their corresponding loss, accuracy
values are represented by single markers.

Fig. 4. Loss function values and classification accuracy with different t achieved by Eiffel, adaptive federated learning baseline [4] and centralized
baseline for CNN model trained on CIFAR-10 under different settings. The average t value of Eiffel, baseline [4] and their corresponding loss, accu-
racy values are represented by single markers.

Fig. 5. Loss function values and classification accuracy with different t achieved by Eiffel, adaptive federated learning baseline [4] and centralized
baseline for CNN model trained on F-MNIST under different settings. The average t value of Eiffel, baseline [4] and their corresponding loss, accu-
racy values are represented by single markers.
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performance, with lower loss and higher accuracy, than the
decentralized approach. However, our experimental setting
has a fixed resource budget (fixed computation time), thus
the centralized approach does not necessarily beat the decen-
tralized one. For example, as shown in Fig. 4a, federated
learning can benefit from utilizing the computation capabili-
ties of UEs in parallel, while the centralized approach relies
on the computation resource of a single server which pro-
longs the iteration time, especially when the model is com-
plex and the dataset is large.

Table 5 further provides a comprehensive presentation on
the model performance of Eiffel and [4] under different set-
tings as aforementioned, in comparison with the Centralized
baseline. In particular, we show the difference of the loss val-
ues between Eiffel and the Centralized baseline (Column 4),
and that between [4] and the Centralized baseline (Column 5),
under the adaptive federated learning setting and the three
fixed-t settings (with values of 1, 30 and 70, respectively), for
both i.i.d. and non-i.i.d. data distributions. The positive value
indicates how far the loss increases from the Centralized base-
line, while the negative value implies that the decentralized
federated learning approach gets better model performance,
in terms of lower loss, than the centralized one.

6.2.4 Varying Resource Budget and Participation Ratio

We have conducted another set of experiments in the proto-
type system, to show the impact of different parameters on

model performance, including the resource budget and the
number of selected participants. Fig. 6 shows the effect of
different resource budget on the loss and accuracy perfor-
mance achieved by the SVM model, when trained with the
strategies of Eiffel, adaptive baseline [4], and the fixed t set-
ting (t ¼ 10, the green dashed line), respectively. Intuitively,
the model performance improves with the increasing
resource budget for each comparing strategy. Adaptive t

setting is always more efficient than fixed t setting with
increasing resource budget. For Eiffel and [4], with the incre-
ment of resource budget, their t values become close to 1.
Therefore, with the increased frequency of global aggrega-
tion, the performance gets better. We can also observe that,
initially, due to very small resource budget, Eiffel starts with
selecting a small number of UEs which results in a lower
performance compared to [4]. With increasing resource
budget, it attains better performance compared to [4],
because of its effective scheduling strategy that improves
the learning efficiency. With respect to the impact of device
selection ratio, we have conducted the experiments of learn-
ing the SVMmodel with Eiffel under the settings of selecting
5, 10, 15 and 20 out of 20 devices, given different t values,
respectively. As shown in Fig. 7, there exists an obvious per-
formance gap between selecting 5 devices and the other
three settings. The small number of participants leads to the
performance degradation, intuitively. On the other hand,
when we select 10, 15 and all of the 20 devices, consecu-
tively, the performance remains almost identical with the
varying t value. Thus we can afford to select only 10 or 15
out of 20 UEs to get the similar model performance while
saving resource to a large extent.

7 DISCUSSION AND FUTURE DIRECTION

We have demonstrated the communication and computa-
tion efficiency as well as model fairness achieved by Eiffel in

TABLE 5
Comparison on Loss Value Differences of Eiffel Versus
Centralized Baseline and Adaptive Learning Baseline [4]
Versus Centralized Baseline, for SVM Trained onMNIST,

CNN Trained on CIFAR-10, and CNN on F-MNIST,
Respectively, Under Different Settings

Avg-t : average value of t in the adaptive federated learning.

Fig. 6. Effect of different resource budget on model performance.

Fig. 7. Effect of different number (n) of selected participants among 20
UEs on model performance.
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our prototype system and emulated large-scale environment.
The crucial issues studied and challenges addressed by Eiffel
generally exist in any real-world federated learning application.
Thus, the solution proposed in Eiffel can be taken advantage of
by a broad range of real-life federated learning applications
deployed in today’s Internet-of-Things infrastructure, with
some additional privacy enhancement (e.g., preventing the
indirect privacy leakage) according to particular requirement.

Eiffel coordinates the learning based on a number of factors
associated with participating UEs and the network, i.e, the
memory, computation power, bandwidth and communication
time. Further mathematical and algorithmic analysis could be
explored to understand the impact of each term on achieving
efficiency and fairness. We would like to conduct further
investigation including more heterogeneity of resources
among the UEs, i.e. mobility patterns of mobile devices, and
better management of stragglers among UEs, including case
study based on different real-life scenarios such as unexpected
system failures, extremely constrained resource availability,
etc.Wealso consider to incorporate the flexibility of addingdif-
ferent fairness preference in our algorithm, and conduct more
large-scale real-world experiments to further evaluate Eiffel.

8 CONCLUSION

In this paper we propose Eiffel, which is an efficient and fair
scheduling algorithm for large-scale federated learning in
resource-constrained environments. Our algorithm saves
the communication throughout the process of federated
learning by selecting a subset of devices to achieve the best
resource efficiency. The algorithm is also designed to ensure
model fairness, which is defined with respect to the model
performance distribution across the devices. We have ana-
lyzed the performance of Eiffel, including the fairness analy-
sis and the convergence bound derivation. Furthermore, we
have conducted experiments in a variety of settings, learn-
ing simple and complex models on publicly available large-
scale image datasets for both i.i.d and non i.i.d data distribu-
tions in the real-world and simulated environment. Results
demonstrate that Eiffel outperforms the state-of-the-art in
terms of model fairness and communication efficiency, while
achieving similarmodel performance.
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